DETERMINACION DEL PERIODO ANESTESICO, POSANESTESICO Y CONSTANTES FISIOLÓGICAS DE OTORONGOS O JAGUARES (PANTHERA ONCA) CRIADOS EN CAUTIVERIO EN EL ZOOLOGICO PARQUE NATURAL PUCALLPA BAJO LOS EFECTOS DE LA ASOCIACION KETAMINA-XILAZINA

DETERMINATION OF PERIOD ANESTHETIC POSANESTHESICO AND CONSTANT OR PHYSIOLOGICAL JAGUARS JAGUARS (PANTHERA ONCA) BRED IN CAPTIVITY IN THE NATURAL PARK ZOO PUCALLPA UNDER THE INFLUENCE OF THE ASSOCIATION KETAMINE-XYLAZINE

Sarita Pérez Castro.¹
Daniel Paredes López.²
Samuel. S. Pérez.³
¹² Práctica privada
² Docente del Departamento de Ciencia Animal
³ Universidad Nacional Agraria de la Selva, Tingo María.

RESUMEN

El objetivo del presente trabajo fue determinar los efectos de la asociación de xilacina -ketamina sobre el periodo de anestesia y pos anestesia y las constantes fisiológicas durante la inmovilización de Panthera onca criados bajo las condiciones de cautiverio en el Parque Zoológico Natural de Pucallpa. Para ello se utilizaron diez otorongos en cautiverio entre 9 y 15 años de edad y entre 40-67 Kg de peso vivo del Parque Zoológico Natural Pucallpa, Ucayali, Perú. Estos fueron inmovilizados con una combinación de Clorhidrato de Ketamina (KH) y Clorhidrato de Xilacina (XH) de 17.40 ± 3.97 mg/kg y 0.82 ± 0.37 mg/kg respectivamente. Se registró el tiempo de efecto inicial y de inducción completa, la temperatura rectal, frecuencia cardiaca y respiratoria y el tiempo de recuperación. El tiempo de efecto inicial fue de 6.9 ± 2.88 minutos y el tiempo de inducción completa de 12.9 ± 6.19 minutos. La temperatura rectal durante la inmovilización fue de 38.5 a 41.2 °C. La frecuencia cardiaca y respiratoria fue de 64-146 latidos/min y de 20-36 respiraciones/min respectivamente. Los animales se recuperaron en 151.1 ± 17.46 minutos. De esto podemos concluir que el periodo de anestesia, pos anestesia y las constantes fisiológicas de los ejemplares de Panthera onca criados bajo las condiciones de cautiverio en el Parque Zoológico Natural de Pucallpa, se mantuvieron dentro los rangos normales bajo los efectos de la asociación xilacina -ketamina.

PALABRAS CLAVE: Panthera onca, anestesia, inmovilización, Ketamina, Xilacina.

ABSTRACT

The objective of the present research was to determine the ketamine - xilazine effects on the anesthetic and post anesthetic period and the physiological constants during the immobilization period of Panthera onca breed under the Parque Zoológico Natural de Pucallpa captivity conditions. For this purpose ten jaguars in captivity from the Parque Zoológico Natural de
Pucallpa weighing 40 to 67 kg were used. These were immobilized with 17.4 ± 3.97 mg/kg of ketamine chloride (KC) and 0.82 ± 0.37 mg/kg of xylazine chloride (XC). The initial effect and complete induction time, rectal temperature, cardiac and respiratory frequency and recovery time were recorded. The initial effect time was 6.9 ± 2.88 minutes and the time of complete induction was 12.9 ± 6.19 minutes. The rectal temperature during immobilization time was from 38.5 to 41.2 °C. The cardiac and respiratory frequency was from 64 to 116 bits/minute and from 26 to 36 respirations per minute respectively. The recuperation time was 151.1 ± 17.46 minutes. Conclusively, the anesthetic and post anesthetic period and physiological constants of *Panthera onca* breed under the Parque Zoológico Natural de Pucallpa captivity conditions, maintained into normal ranges under the ketamine-xylazine association effect.

KEY WORDS: *Panthera onca*, anestesia, immobilization, ketamine, xylazine

INTRODUCCIÓN

La *Panthera onca* conocido como otorongo en el Perú muestra el drama de la destrucción del medio ambiente natural. Existen escasas reservas naturales privadas y estatales donde el otorongo y otros ejemplares de la fauna autóctona gozan de protección. (Pulido, 1991). La inmovilización química de felinos silvestres es un procedimiento favorable así como también peligroso tanto para los animales como para el personal de servicio que interviene en la misma. Los felinos silvestres responden a los agentes anestésicos de manera similar a los felinos domésticos (Morris, 2001).

La ketamina es uno de los anestésicos más ampliamente utilizados en la inmovilización de carnívoros silvestres; produce una rápida anestesia disociativa con analgesia moderada así mismo tiene amplio margen de seguridad que permite la estimación general de peso corporal. (Nielsen, 1996; Morris, 2001). Sin embargo las altas dosis de ketamina, puede ocasionar salivación, rigidez muscular, convulsiones y depresión respiratoria, muchos de estos efectos secundarios se pueden prevenir mediante la adición de un sedante o tranquilizante adecuado como por ejemplo la Xilicina (Morris, 2001). Esta asociación anestésica ha sido usada por más de 30 años para mejorar la anestesia y reducir algunos efectos colaterales no deseados, especialmente excesiva contracción muscular y catalepsia. A pesar de algunas desventajas que posee esta asociación como dificultad de reversión y convulsiones comparada con otras drogas y asociaciones más modernas, es bastante segura, sumado al hecho de su amplia disponibilidad y bajo costo en el país (Fowler, 1986; Adams, 2001; Knight, 1980).

Las diferentes formas de manejo que se necesitan en los felinos en su hábitat y en cautiverio, hace necesario que se implementen de protocolos de inmovilización de los mismos. El objetivo de este estudio fue determinar los efectos de la combinación anestésica ketamina - xilicina sobre el periodo de anestesia y pos anestesia y las constantes fisiológicas de otorongos o jaguares (*Panthera onca*) criados bajo condiciones de cautiverio del Parque Zoológico Natural de Pucallpa.
MATERIAL Y MÉTODOS

 Área de investigación
Los felinos muestreados en este estudio provienen del Zoológico Parque Natural Pucallpa, ubicado en la ciudad de Pucallpa, provincia de Coronel Portillo, región de Ucayali a 8°22’ 59’’ de latitud sur, 74°33’00’’ de longitud oeste y 154 m.s.n.m de altitud, a una temperatura mínima de 21.5°C y máxima de 33°C, una humedad relativa mínima de 54.26% y máxima de 93.5% y una precipitación pluvial de 1570 mm.

Animales
Se utilizaron diez otorongos o jaguares (5 machos y 5 hembras) del Zoológico Parque Natural Pucallpa en estado de cautividad fueron inmovilizados y anestesiados para estudios de hematología y bioquímica sanguínea. El origen de los felinos estudiados fue diverso, algunas de ellos se habían mantenido en cautiverio por varios años, mientras que otras tenían poco tiempo en cautividad y provenían de donaciones, vida silvestre y decomiso. La dieta de los animales en general consiste en carne equina o vacuna de 3-4 Kg diario. No fue conveniente el uso de mayor número de ejemplares por razones de ética.

Inmovilización química de animales
Los animales fueron inmovilizados en tres días diferentes entre las 6:00 a.m. y 10:00 a.m. sometiéndolos a ayuno previo. Los otorongos o jaguares fueron capturados en la jaula de seguridad de su recinto o ambiente. Se utilizó una cerbatana para disparar dardos de 3 y 5 ml (Figura 1). La dosis promedio de ketamina y xilacina utilizadas fue de 17.4±3.67 mg/kg y 0.82±0.30 mg/kg respectivamente.

El periodo de anestesia y post anestesia de la inmovilización se registraron en los siguientes momentos: 1) tiempo de efecto inicial, primera aparición de ataxia o sedación; 2) tiempo de inducción completa, pérdida de reflejos de enderezamiento dando como resultado una postración lateral o external, 3) tiempo de recuperación o de inmovilización total, tiempo desde la inducción hasta el momento de regresar al estado ambulatorio.

Figura 1. Ubicación corporal usada para la administración IM de los dardos en otorongos o jaguares (Panthera onca).

El ritmo cardíaco fue medido por auscultación cardíaca, el respiratorio por observación directa de exhalaciones torácicas, y la temperatura con un termómetro rectal. Los parámetros fisiológicos de temperatura rectal y la frecuencia respiratoria a intervalos de 7.8 ± 1.43 minutos de la inducción completa. La frecuencia cardíaca fue medida luego de 10± 1.43 minutos de la inducción. Se determinó el peso, también se tomaron muestras de sangre. Durante la revisión clínica, se pudo identificar sexo y la edad aproximada de cada animal, así como la revisión de dentadura, curación de heridas o laceraciones recientes en caso de encontrarse. Antes de cualquier movimiento, los animales fueron puestos a la jaula de seguridad de su respectivo recinto o ambiente, donde permanecieron hasta su recuperación total de los efectos de la anestesia. Para determinar la dosis real empleada de anestésico se dividió la dosis total administrada entre el peso real obtenido.

El análisis estadístico se realizó mediante pruebas y medidas de dispersión media. Para analizar si existía alguna diferencia entre sexos en relación a los valores fisiológicos se utilizó la prueba de T-student. Todos los niveles de significancia se ajustaron en $p \leq 0.05$
RESULTADOS Y DISCUSIÓN

En total se inmovilizaron 5 machos adultos y 5 hembras adultas. No se encontró efecto del sexo sobre el peso corporal. Los primeros efectos ocurrieron dentro de 6.9 ±2.88 minutos. El tiempo promedio de inducción completa (fotografía 2) fue de 12.9±6.19 minutos, con un promedio de 15.4±6.95 minutos en machos y un promedio de 10.4±4.72 minutos en hembras. El tiempo de recuperación o de inmovilización total promedio fue de 151.1±17.46 minutos, con un promedio de 154.6 ±18.01 minutos para los machos y un promedio de 147.6±18.19 minutos en las hembras (Cuadro 01).

Figura 2. Estado de inducción completa de la anestesia en otorongos o jaguares (*Panthera onca*)

Tabla 1. Peso, dosis de ketamina y xilacina, el tiempo de efecto inicial, el tiempo de inducción completa y el tiempo de recuperación para 10 otorongos (*Panthera onca*) del Zoológico Parque Natural Pucalipa

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>Macho (n=5)</th>
<th>Hembra (n=5)</th>
<th>Total (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso corporal real (Kg)</td>
<td>56.8±10.76</td>
<td>51.2±2.77</td>
<td>54±7.97</td>
</tr>
<tr>
<td>Ketamina (mg/Kg)</td>
<td>16.68±2.25</td>
<td>18.10±4.91</td>
<td>17.40±3.67</td>
</tr>
<tr>
<td>Xilacina (mg/Kg)</td>
<td>0.76±0.36</td>
<td>0.88±0.27</td>
<td>0.82±0.30</td>
</tr>
<tr>
<td>Tiempo de efecto inicial (min)</td>
<td>9.0±1.41</td>
<td>4.8±2.39</td>
<td>6.9±2.88</td>
</tr>
<tr>
<td>Tiempo de inducción (min)</td>
<td>15.4±6.95</td>
<td>10.4±4.72</td>
<td>12.9±6.19</td>
</tr>
<tr>
<td>Tiempo de recuperación (min)</td>
<td>154.6±18.01</td>
<td>147.6±18.19</td>
<td>151.1±17.46</td>
</tr>
</tbody>
</table>

Los promedios de la temperatura y respiratorio en los 8±2.0 minutos después de la inducción completa fueron 39.7 ± 0.9°C (rango 37.9-41.2; n=10) sin diferencias entre sexos (t=0.383, P=0.356>0.05) y 26.2 ± 6.14 respiraciones/min (rango 20-36; n=10) sin diferencias entre sexos (t=0.492, P=0.318>0.05). Finalmente, la frecuencia cardíaca después de 10±2.31 minutos de inducción fue de 97.3 ± 23.12 latidos/minuto (rango 64-146; n=10), con diferencias entre sexos (t=2.008, P = 0.041< 0.05) (Cuadro 02).
Tabla 02. Constantes fisiológicas de otorongos (Panthera onca) inmovilizados con Ketamina-Xilacina del Zoológico Parque Natural Pucallpa.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>Macho (n=5)</th>
<th>Hembra (n=5)</th>
<th>Total (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Media±SD</td>
<td>Media±SD</td>
<td>P</td>
</tr>
<tr>
<td>Temperatura corporal</td>
<td>39.62±1.39</td>
<td>39.94±1.25</td>
<td>0.356</td>
</tr>
<tr>
<td>(°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frecuencia respiratoria</td>
<td>27.20±7.16</td>
<td>25.20±5.59</td>
<td>0.318</td>
</tr>
<tr>
<td>(resp/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frecuencia cardiaca</td>
<td>84.60±17.43</td>
<td>110±22.27*</td>
<td>0.041*</td>
</tr>
<tr>
<td>(lat/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Efecto del sexo P = 0.041< 0.05

El protocolo anestésico Ketamina-Xilacina con dardos a una dosis promedio de 17.40±3.97 mg/kg y 0.82±0.37 mg/kg dio como resultado una rápida inmovilización con buena relajación muscular e incremento de la frecuencia cardiaca en un animal. La dosis utilizada se asemeja a lo reportado en la literatura para jaguares en cautiverio con 15-20 mg/kg ketamina y 1-1.5 mg/kg xilacina. Sin embargo son superiores a lo recomendado para jaguares libres con dosis de 10.6-11.5 mg/kg Ketamina y 1.3-1.4 mg/kg xilacina; o 11 mg/kg Ketamina y 1 mg/kg xilacina (Deem, 2004). Nogueira y Silva (1997) registraron dosis menores de 10 mg/kg ketamina y 1 mg/kg xilacina en 8 jaguares y otras 4 especies de felinos (Felis concolor, Felis yagouaroundi, Felis tigrina y Felis pardalis) de Zoológicos de Sao Paulo Brasil. Genaro et al. (2007) reportan dosis similar a la utilizada con ketamina 20 mg/kg y xilacina 1 mg/kg en 22 jaguares (14 machos y 8 hembras) en cautiverio de Brasil, pero no indican resultados de la anestesia realizada, por lo cual no se pueden hacer comparaciones con el procedimiento que ellos realizaron.

La combinación anestésica Ketamina-Xilacina ha sido utilizada con éxito en otras especies de felinos. Por ejemplo, en Tanzania USA para leones (Panthera leo) con dosis de 3.8-16.7 mg/kg de KH y 0.46-1.17 mg/kg de XH (Herbst et. al., 1985), en esta especie Latorre et al. (2006) utilizaron dosis de 4 mg/kg y 2 mg/kg respectivamente con un tiempo de inducción de 15 minutos; en Chile se inmovilizaron guíñas (Leopardus guigna) con dosis de 15.4±3.2 mg/kg KH and 1.7±0.3 mg/kg XH con tiempo de inducción de 4.6±2.9 minutos y tiempo de recuperación de 63.9±31.9 minutos (Acosta y Funk, 2007): en Texas USA para 10 ocelotes (Felis pardalis) y 21 gatos montes (Felis rufus) se administraron dosis de Ketamina: 14.1±1.6 mg/kg y 13.3±1.8 mg/kg; Xilacina : 1.1±0.1 mg/kg y 1.2±0.1 mg/kg, respectivamente, con tiempo de inducción de 11.2±1.8 minutos y 9.1±1.1 minutos; el tiempo de inmovilización de ocelotes (40.3±2.8 mm) es menor que en gato montés (50.0±3.3 mm) (Beltrán y Tewes,1995). Por otro lado en la India, Belsare y Athreya (2010) utilizaron para leopardo (Panthera pardus fusca) dosis de 5±2 (rango 3-11) KH mg/kg y 1.4±0.3 XH (rango 0.6-2.1) mg/kg reportando un tiempo de inducción de 10±4 (rango 3-22) minutos y un tiempo de recuperación de 66±27 (rango 20-151) minutos.

La dosis utilizada en guíñas por Acosta y Funk (2007) y el tiempo de inducción reportado por Belsare y Athreya (2010) se asemejan a los obtenidos en el estudio, con una buena relajación muscular y un tiempo de recuperación prolongado de 148.1±21.34.
Las constantes fisiológicas de temperatura rectal, frecuencia respiratoria y frecuencia cardiaca a partir de 10 individuos inmovilizados guardan similitud con los reportados por Morato et al. (2001) para jaguares libres entre 47 a 130 kg con $39.7 \pm 0.9 ^\circ C$, 34 ± 16.4 respiraciones/min y 130 ± 14.5 latidos/min (rango 108-160), respectivamente. Zarrate et al. (2009) encontraron valores de frecuencia cardiaca y frecuencia respiratoria de 40 latidos/min y 24 resp/min en un jaguar entre 25-30 kg con dosis menor de Ketamina-Xilacina. Los valores de un otorongo melánico del zoológico (38°C, 20 resp/min y 64 latidos/min), están dentro del rango publicado por Waelbers et al., (2007) en un otorongo melánico sometido a medetomidina 60 µg/kg y ketamina 2.5 mg/kg con 35.3 °C, 16-26 resp/min y 48-80 latidos/min respectivamente.

La mayoría de los animales mostraron una elevada temperatura y en un caso aumentó a 41.2° C probablemente por el estrés de captura, alta temperatura y la agresividad previas a la administración de la combinación anestésica. El rango de temperatura es mayor al descrito por Deem (2004) y similar a lo reportado por Morato et al. (2001). Por otro lado Beltrán y Tewes (1995) encontraron valores de 37.9 - 42.1 C en ocelotes (Felis pardalis) y 36.5- 42.7 C en gato montés (F. rufus) sometidos a similar protocolo.

La frecuencia respiratoria supera los parámetros recomendados para jaguares libres (Deem ,2004). Sin embargo los valores encontrados es similar en relación a guías (22-30 resp/min) registrados por Acosta y Funk (2007) con similar protocolo; y en relación a ocelotes (12-36 resp/min) por Beltrán et al. (2009) con tiltamina-zolazepam-medetomida. Existe gran variación de frecuencia cardiaca (64-146 latidos/min) como observó Morato et al. (2001). Asimismo se encontraron valores similares en ocelotes con dos protocolos de anestesia (Ketamina + medetomida y Tiletamina-zolazepan + medetomida) (Nallar, 2010) y en guías con protocolo similar (Acosta y Funk, 2007).

Durante la inmovilización se observó convulsión en 3 animales de 2-3 episodios de 20-30 segundos de duración. Las convulsiones son disturbios de la función cerebral, caracterizados por contracciones violentas e involuntarias de los músculos (Deem, 2004). Las convulsiones reportadas en el estudio pudo ser ocasionado a una alta dosis de ketamina utilizada debido que los animales se encontraban excitados por lo que requerían más medicamentos para la inducción de la anestesia y una vez anestesiado tienen una mayor tendencia a la depresión respiratoria, hipertermia, convulsiones y acidosis (Morris, 2001). Asimismo es importante tener en cuenta que si el animal es pre-excitado o bajo estrés, el efecto farmacológico de los agonistas de receptores adrenérgicos alfa-2 disminuye, ya sea solo o en combinación con anestésicos (Pachaly, 2000). Las convulsiones puede tratarse administrando 10 mg de diazepam por vía endovenosa (Herbst et. al., 1985; Deem, 2004) como se ha reportado para jaguares y leones, respectivamente. No se reportaron la ocurrencia de convulsiones en jaguares inmovilizados por Morato et al. (2001), Waelbers (2007) y Zarrate (2009).

Se presento cierto grado de ptialismo y vomito en un animal en dos ocasiones sin una complicación mayor. La salivación y el vomito pueden causar una bronco aspiración por lo que es necesario abrir la boca o poner la cabeza a un nivel más bajo que el resto del cuerpo. Algunos autores recomiendan adicionar atropina en el protocolo anestésico para disminuir la salivación y evitar la bronco aspiración (Deem, 2004). Durante la inmovilización con tiltamina-zolazepam por Morato et al. (2001), se evito el uso de anticolinérgicos. El vomito es producto del efecto fisiológico emético de la Xilacina (Zarrate et al. 2009); además se asocio a que el animal tenía el estomago distendido con comida del día anterior. En este caso para evitar la bronco aspiración se abrió la boca y se colocó al animal de cubito ventral. En leopardos (Panthera pardus fusca) se ha reportado vomito en 9 animales de 55 animales, de una a dos ocasiones con 30 segundos
de duración con dosis de KH/XH de 3 -11 mg/kg y 0.6-2.1 mg/kg (Belsare y Athreya, 2010). También se reportaron vómito en 6 leones de 19 animales con una razón KH/XH de 3.8-16.7 mg/kg y 0.46-1.17 mg/kg (Herbst et al., 1985).

Lo más importante del uso de anestésico es la seguridad con baja mortalidad. Pocos informes han reportado caídas de muerte por esta asociación en felinos. El uso de esta asociación parece producir una baja mortalidad (Acosta y Funk, 2007; Beltrán y Tewes ,1995; Belsare y Athreya ,2010; Herbst et. al., 1985; Genaro et al., 2007) como ha ocurrido en el presente trabajo, reafirmando el hecho del amplio margen de seguridad de esta asociación (Nielsen, 1996; Morris, 2001).

Los resultados mostraron que los efectos de la asociación ketamina-xilacina a la dosis de 17.4±3.67 mg/kg y 0.82±0.30 mg/kg permiten un periodo de inducción completa de anestesia promedio de 15.4±6.95 minutos en machos y de 10.4±4.72 minutos en hembras; así mismo un periodo de recuperación de la anestesia promedio de 154.6 ±18.01 minutos para los machos y de 147.6±18.19 minutos en las hembras durante el periodo de inmovilización de jaguares criados bajo las condiciones de cautividad del Parque Zoológico Natural de Pucallpa.

AGRADECIMIENTO
Un sincero agradecimiento al personal administrativo, veterinario y de servicio del Parque Zoológico Natural Pucallpa, por permitir la realización de este trabajo en su institución y por la asistencia prestada con el manejo de los felinos durante el trabajo.

REFERENCIAS BIBLIOGRÁFICAS
10. Nallar R., 2010. Comparación de dos protocolos de inmovilización con ketamina + medetomidina vs. tiletamina/zolazepam + medetomidina en ocelotes (Leopardus pardalis) de vida silvestre en el

CORRESPONDENCIA

Daniel Paredes: daniel.paredes9@gmail.com

FECHA DE RECEPCIÓN: 21/11/2011

FECHA DE ACEPTACIÓN: 30/01/2012